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Abstract

The garbage disposal game involves a finite set of individuals, each of whom updates their
garbage by either receiving from or dumping onto others. Instead of applying game theory,
we investigate the game from a mathematical perspective. We examine the case where only
social neighbors, whose garbage levels differ by at most a given threshold, can offload an
equal proportion of their garbage onto others. Remarkably, in the absence of this threshold,
the garbage amounts of all individuals converge to the initial average on any connected social
graph of order at least 3.

1 Introduction

The garbage disposal game comprises a set of n individuals. Each individual updates their
garbage either by receiving garbage from others or by dumping garbage onto others [8]. Math-
ematically, let [n] = {1, . . . , n} represent the set of all individuals, and let xi(t) ≥ 0 denote the
amount of garbage held by individual i at time t. The update rule for individual i’s garbage is
given by xi(t+1) =

∑
j∈[n]Aij(t)xj(t), where Aij(t) ∈ [0, 1] represents the proportion of individ-

ual j’s garbage that is dumped onto individual i at time t. This ensures that
∑

i∈[n]Aij(t) = 1.
A vector is stochastic if all entries are nonnegative and add up to 1. A square matrix is row-
stochastic if each row is stochastic, and column-stochastic if each column is stochastic. Writing
the update mechanism in matrix form:

x(t+ 1) = A(t)x(t) (1)

where

x(t) = transpose of (x1(t), . . . , xn(t)) = (x1(t), . . . , xn(t))
′ ∈ Rn

≥0,

A(t) ∈ Rn×n is column-stochastic with the (i, j)-th entry Aij(t).

The utility of individual i at time t is ui(xi(t)), where ui is a decreasing function. This indicates
that the more garbage an individual processes, the less utility they derive.

Unlike certain opinion models, such as the voter model, the threshold voter model and the
asynchronous Hegselmann-Krause model, where an agent solely updates their opinion at each
time step, an agent in the garbage disposal game cannot update their garbage independently
if they dump onto others [14, 3, 13, 11, 5, 1, 6, 7, 16, 4, 9]. In the Hegselmann-Krause (HK)
model, an agent updates their opinion by averaging the opinions of their opinion neighbors. In
the synchronous HK model, all agents update their opinions at each time step, whereas in the
asynchronous HK model, only one agent, uniformly selected at random, updates their opinion at
each time step [12, 13, 15]. The HK model belongs to averaging dynamics but is not necessarily
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a garbage disposal game. Moreover, the matrix A(t) is not always row-stochastic, so the garbage
disposal game does not necessarily belong to averaging dynamics.

In this paper, we consider the garbage disposal game, in which an individual can dump
garbage onto others if and only if they are social neighbors and their garbage differs by at most
a confidence threshold ϵ > 0, which is a random variable. In detail, let G = ([n], E) be an
undirected simple social graph with vertex set [n] and edge set E. An edge (i, j) ∈ E symbolizes
that agents i and j are social neighbors. Let Gt = ([n], Et) be a subgraph of G at time t
with vertex set [n] and edge set Et = {(i, j) ∈ E : |xi(t) − xj(t)| ≤ ϵ}, recording agents who
are social neighbors and whose garbage differs by at most the threshold ϵ. Ni(t) = {j ∈ [n] :
(i, j) ∈ Et} includes all social neighbors of agent i at time t whose garbage differs by at most the
threshold ϵ. The proportion of agent j’s garbage dumping onto agent i equals 1

|Et| if (i, j) ∈ Et,

1− |Ni(t)|
|Et| 1{Et ̸= ∅} if i = j, and 0 otherwise. Namely,

Aij(t) =
1

|Et|
1{(i, j) ∈ Et} if i ̸= j, Aii(t) = 1− |Ni(t)|

|Et|
1{Et ̸= ∅}.

Thus, agents i and j dump the same proportion of their garbage onto each other if they are
social neighbors and their garbage differs by at most the threshold ϵ. For instance, if Gt is the
star graph of order 6, as shown in Figure 1, then agent 1 can dump 1

5 of their garbage onto each
of the other agents, and each of the other agents can dump 1

5 of their garbage onto agent 1.
Note that agent 1 is the center of the star graph and is the only agent emptying their original
garbage. The update mechanism is as follows for all i ∈ [n]:

xi(t+ 1) =
1{Et ̸= ∅}

|Et|
∑

j∈Ni(t)

xj(t) +

(
1− |Ni(t)|

|Et|
1{Et ̸= ∅}

)
xi(t). (2)

Observe that the garbage disposal game described in (2) falls within the category of averaging
dynamics. We assume that xi(0), i ∈ [n], are nonnegative real-valued random variables. Let
a∧b and a∨b denote the minimum and maximum of a and b, respectively. A graph G is termed
δ-trivial if the distance between any two vertices is at most δ. Let V (H) represent the vertex
set of the graph H. Let 1 denote the vector with all entries equal to 1. The Laplacian L on
the simple graph G = ([n], E) is defined as L = diag(d1, . . . , dn)−A, where di is the degree of
vertex i in G, and A is the adjacency matrix of G with Aij = 1{(i, j) ∈ E}. The convex hull
generated by v1, v2, . . . , vn ∈ Rd is the smallest convex set containing v1, v2, . . . , vn. It is defined
as follows:

C({v1, v2, . . . , vn}) =

{
v : v =

n∑
i=1

λivi where (λi)
n
i=1 is a stochastic vector

}
.

Figure 1: Star graph of order 6



2 Main Results

The ϵ-triviality of the graph Gs implies G = Gs, which is equivalent to the case without the
threshold ϵ. We will later prove that the graph Gt preserves δ-triviality over time for all δ > 0,
leading to Gt = G for all t ≥ s. Thus, from time s onward, the garbage disposal game is
played on the social graph G. Consequently, Theorem 1 shows that, without the threshold ϵ,
the garbage amounts of all agents will converge to the initial average on any connected social
graph of order at least 3. Note that setting ϵ = maxi,j∈[n] |xi(0)− xj(0)| is equivalent to having
no threshold ϵ.

Theorem 1. Assume that

• the social graph G is connected with n ≥ 3, and

• the graph Gs is ϵ-trivial at some time s ≥ 0.

Then, xi(t) converges to 1
n

∑
k∈[n] xk(0) as t → ∞ for all i ∈ [n].

Observe that when n = 2, it is a process of mutually interchanging garbage. Under the
assumption of Theorem 1, those whose garbage is above average benefit from the game, while
those whose garbage is below average suffer in the game.
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